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Microphases and triangle phase diagrams of ABC star triblock copolymers are investigated on the basis of a
real-space implementation of the self-consistent field theory (SCFT) for polymers. For the sake of numerical
tractability, the calculations are carried out in two dimensions (2D). Nine stable microphases are uncovered,
including hexagonal lattice, core-shell hexagonal lattice, lamellae, and lamellae with beads at the interface
as well as a variety of complex morphologies that are absent in linear ABC triblocks, such as a “three-color”
hexagonal honeycomb phase, knitting pattern, octagon-octagon-tetragon phase, lamellar phase with alternating
beads, and decagon-hexagon-tetragon phase. We have found that when the volume fractions of the three
species are comparable the star architecture of the polymer chain is a strong topological constraint that regulates
the geometry of the microphases formed. However, when at least one of the volume fractions of the three
species is low, the influence of the star architecture on the morphology is not significant. Our calculations
reasonably agree with previous theoretical and experimental results and can be used to guide the design of
novel microstructures involving star triblock copolymers.

I. Introduction

Block copolymers are produced by linking two or more
chemically different homopolymers into a single macromolecule.
The chemically distinct blocks normally undergo microphase
separation, creating intricate morphologies that have applications
ranging from thermoplastic elastomers to adhesives, coatings,
and templates for nanocomposites.1,2 For the simplest AB
diblock copolymer, it has been recognized that, depending on
the composition and the chemical interaction (usually described
by the Flory-Huggins interaction parameter) between the two
species, only four stable microphasessspheres, cylinders, gy-
roids, and lamellaesexist under equilibrium conditions. How-
ever, as the number of distinct blocks is increased from two to
three, say, ABC triblocks, both the complexity and variety of
self-assembled structures are significantly increased.3-6 For
triblock copolymers, the microphases depend not only on the
composition and interaction energies between distinct blocks
but also on their particular molecular architectures. For example,
the phase behavior of ABC linear triblock copolymers crucially
depends on the sequence of the blocks in the chain (i.e., whether
it is sequenced A-B-C, B-C-A, or C-A-B).7-9 Indeed, a
range of characterization experiments have been applied to
various sample linear ABC triblock copolymers and have
provided detailed evidence of the profound effects of block
sequencing on their equilibrium morphology.3,7,9

More interestingly, instead of being consecutively joined to
form a linear triblock chain, the A, B, and C blocks may also
form a star-shaped copolymer by joining one of the ends of
each block together at a center core. Compared to linear block
copolymers, an additional entropic effect due to the junction
constraint of the center cores arises in the star block copolymers
even in the disordered state. While in ordered states, the

existence of the cores becomes a strong topological constraint
that regulates the formation of various geometric structures. In
contrast to linear triblocks, the experimental study of the phase
behavior of ABC star triblocks is limited by difficulties in their
synthesis and exact characterization of the structure.10-15

Only a few theoretical approaches, such as Monte Carlo
simulations16 and the density functional method,17,18were used
to investigate the microphase formation of ABC star triblock
copolymers. However, because of the difficulties of numerical
computation, only a few points in the parameter space are
touched. Therefore, a systematic investigation of how the phase
behavior is related to the star architecture is still desired. In
this paper, we use a combinatorial screening method, which
was recently proposed by Drolet and Fredrickson,19,20to search
for possible new microphases formed in ABC star triblocks.
The screening method involves the direct implementation of
the self-consistent field theory (SCFT) for polymers in real space
in an adaptive arbitrary cell. In previous work,21 we have used
this method to predict the microphases and triangle phase
diagrams for linear ABC triblock copolymers. We now expand
it to search the equilibrium microphases of ABC star triblock
copolymer melts. On the basis of these microphases, three-
component triangle phase diagrams in the entire range of the
copolymer composition are constructed, and the influence of
the composition, interaction parameters, and their relative
strengths on microphase formation is investigated.

II. Theoretical Method

We consider a system with volumeV of n star block
copolymers each having A, B, and C arms joined together at a
center core. The total degree of polymerization of the star block
is N, and the A, B, and C blocks consist offAN, fBN, andfCN
monomers, respectively. Each star polymer is parametrized with
the variables, which increases along each arm. The core of the
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star corresponds tos ) 0. Along the A arm,s increases from 0
at the core tofAN at the outer end. The B and C arms are
parametrized similarly. With these definitions, the polymer
segment probability distribution functionsqK(r , s) andqK

+(r , s)
for species K satisfy the modified diffusion equations:22,23

wherea is the Kuhn length of the polymer segment,ωK(r ) is
the self-consistent field for species K, and 0< s < fKN. The
initial conditions areqK(r , 0) ) qL

+(r , 0) qM
+(r , 0) andqK

+(r ,
fKN) ) 1, where (KLM)∈ {(ABC), (BCA), (CAB)}. Note that
one must solve forqK

+(r , s) prior to solving for qK(r , s).
Accordingly, the partition function of a single chain subject to
the mean fieldωK(r ) can be written asQ ) ∫ dr qK(r , s) qK

+(r ,
s) in terms of qK(r , s) and qK

+(r , s). We note thatQ is
independent of the contour length parameter of a chain,s.

With the above description, the free energy of the system is
given by

whereφA, φB, andφC are the monomer density field normalized
by the local volume fractions of A, B, and C, respectively.øAB,
øBC, andøAC are Flory-Huggins parameters between different
species.ê(r ) is the potential field that ensures the incompress-
ibility of the system, also known as a Lagrange multiplier.
Minimizing the free energy in eq 2 with respect toφA, φB, φC,
ωA, ωB, ωC, andê leads to the following self-consistent field
equations that describe the equilibrium morphology:

We solve eqs 3-9 directly in real space by using a
combinatorial screening algorithm proposed by Drolet and
Fredrickson.19,20The algorithm consists of randomly generating
the initial values of the fieldsωK(r ). Using a Crank-Nicholson
scheme and the alternating-direct implicit (ADI) method,24 we
then integrate the diffusion equations to obtainq andq+ for 0
e s e fKN. Next, the right-hand sides of eqs 7-9 are evaluated
to obtain new expression values for the volume fractions of
blocks A, B, and C.ê(r ) is then chosen to be

whereλ is large enough to enforce the incompressibility of the
system (i.e., eq 6) and the resulting density profiles and free
energies should be independent of its particular value. Finally,
the potential fieldsωK(r ) andê(r ) are updated using eqs 3-5
and 10 by means of a linear mixing of new and old solutions.
These steps are repeated until the relative free-energy changes
at each iteration are reduced to 10-4. To avoid the real-space
method becoming trapped in a metastable state, random noise
is added to the fields to disturb the state formed in the iteration.
In addition, we also minimize the free energy with respect to
the system size because it has been pointed out that the box
size can influence the morphology.17 Each minimization is
repeated several times and examined using different initial
conditions. In this way, by varying the composition and the
interaction parameters systematically, we can obtain not only
the typical microphases but also the phase diagram.

For the sake of numerical tractability, the implementation of
the SCF equations is carried out on a 2DLx × Ly lattice with
periodic boundary conditions. The chain length of the polymers
is fixed toN ) 100. The lattice spacings are chosen to bedx )
dy ) a, wherea is the Kuhn length of the polymer segment.
Because the radius of gyration of the polymer chain satisfies
Rg

2 ) Na2/6 and typically the microstructure periodD ≈ 2Rg,
the lattice spacingsdx and dy are ∼0.1D. The typical lattice
size ofLx andLy is ∼10Rg.

III. Results and Discussion

Figure 1 shows all of the 2D microphases that we have
obtained for ABC star triblock copolymers. The morphology is
represented in the form of density plots with intensity propor-
tional to the local composition (volume fraction) of the triblock

∂qK(r , s)

∂s
) a2

6
∇2qK(r , s) - ωK(r ) qK(r , s)

∂qK
+(r , s)

∂s
) - a2

6
∇2qK

+(r , s) + ωK(r )qK
+(r , s) (1)

F
nkBT

)

-ln(QV) + (NV)∫ dr [øABφAφB + øBCφBφC + øACφAφC

- ωAφA - ωBφB - ωCφC - ê(1 - φA - φB - φC)] (2)

ωA(r ) ) øABφB(r ) + øACφC(r ) + ê(r ) (3)
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Figure 1. Schematics of the 2D ordered microphases for ABC star
triblock copolymers. (a) Hexagonal lattice phase (HEX), (b) core-
shell hexagonal lattice phase (CSH); (c) three-color lamellae phase
(LAM 3), (d) three-color hexagonal honeycomb phase (HEX3); (e)
knitting pattern (KP), (f) octagon-octagon-tetragon phase (OOT), (g)
lamellae phase with alternating beads (LAM+ BD), (h) decagon-
hexagon-tetragon phase (DEHT), and (i) lamellae phase with beads
at the interface (LAM+ BD-I).
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copolymers. Three different colorssblue, green, and red ,
respectivelysare assigned to A, B, and C blocks. For a clear
presentation of the final pattern, the linear dimensions of the
unit cell are replicated two times in each direction. Nine
microphases are observed: hexagonal lattice (HEX), core-shell
hexagonal lattice (CSH), three-color lamellae (LAM3), three-
color hexagonal honeycomb (HEX3), knitting pattern (KP),
octagon-octagon-tetragon (OOT), lamellae with alternating
beads inside (LAM+ BD), decagon-hexagon-tetragon (DEHT),
and alternating lamellae phases with beads at the interface (LAM
+ BD-I). It is interesting that all of the polygonal structures
that we obtained (HEX3, OOT, DEHT) are even-numbered,
which agrees with the Monte Carlo simulations by Gemma et
al.16

A. Symmetric Interaction Parameters (øAB ) øBC ) øAC).
We first discuss the case with symmetric interaction parameters
among three species, and hence the influence of copolymer
compositions on the morphology is highlighted. The three-
component triangle phase diagram with Flory-Huggins param-
etersøABN ) øBCN ) øACN ) 35 is shown in Figure 2. The
increment of volume fractionsfA, fB, andfC in the phase diagram
is 0.1. At each grid point, the equilibrium morphologies are
obtained in the way described in section II and represented by
schematic symbols.

In Figure 2, the triangle diagram clearly shows A-B, B-C,
and A-C permutation symmetry. Therefore, switching the
sequences of blocks A and B (ABCf BAC), B and C (ABC
f ACB), and A and C (ABCf CBA) does not alter the phase
symmetry for the system with symmetric interactions between
the three distinct blocks. This feature arises from the special
molecular architecture of the star triblocks. On the contrary,
for linear ABC triblock copolymers, the morphologies and hence
the phase diagram are crucially influenced by the sequence of
blocks.3,7-9,21

Near the three edges (AB, BC, and AC) of the triangle
diagram in Figure 2, where the volume fraction of one of the
blocks (fC, fA, and fB) is no more than 0.1, three types of
microphases (i.e., hexagonal lattice (HEX), core-shell hexago-

nal (CSH), and three-color lamellae (LAM3), as shown in Figure
1a-c, respectively) are found. It is interesting that these three
microphases are also observed in a similar region for ABC linear
triblock copolymers. Therefore, when one of the blocks is
relatively short, the influence of the star architecture on the
morphology is not significant.

In the center region of the phase diagram, where the volume
fractions of the three species are comparable, the situation is
completely different. Three types of novel complex microphasess
the three-color hexagonal honeycomb phase (HEX3), knitting
pattern (KP), and octagon-octagon-tetragon phase (OOT),
whose structures are shown in Figure 1d-f, respectivelysare
observed. These phases, however, are absent in linear ABC
triblocks. Among these complex phases, a perfect HEX3 phase
(Figure 1d) is formed at nearly equal volume fractions of the
three species (symmetric triblocks,fA ≈ fB ≈ fC). The same
morphology has also been predicted in three-arm star triblocks
with equal volume fractions by Bohbot-Raviv and Wang in
terms of minimizing an approximate free-energy functional,17

recently by He et al. using dynamic density functional theory,18

and by Dotera and Hatano using Monte Carlo simulations.16,25

Unfortunately, to date, experimental evidence has not yet been
found to confirm this structure, mainly because of difficulties
in the synthesis of such star triblock copolymers with equal
interaction energies among the three species. In fact, as we will
see later, the HEX3 phase disappears when the interaction
parameters become asymmetric. When the volume fraction of
one of the blocks, say, A, isfA ) 0.2 and the other two blocks
have equal composition,fB ) fC ) 0.4, an octagon-octagon-
tetragon phase (OOT) is found. In this case, the longer blocks
B and C form octagonal domains, and shorter A blocks form
tetragonal domains. Gemma et al. also predicted similar
morphology with the same composition in their Monte Carlo
simulations.16 Another interesting microphase, which is absent
in linear ABC triblock copolymers and is referred to as lamellae
with alternating beads inside (LAM+ BD), shown in Figure
1g, occurs whenfA(fB, fC) ) 0.2, fB(fC, fA) ) 0.6, andfC(fA, fB)
) 0.2.

In Figure 2, whenfA ) fC, as the volume fractionfB increases,
the ordered microphases change from LAM3 to OOT, to HEX3,
to KP, to LAM + BD, to CSH, and finally to HEX phases.
However, whenøN is large enough (e.g.,øN g 80), alternating
lamellar structure with beads formed by the shorter blocks
regularly located at the interface is found in the region between
LAM 3 and OOT. A similar morphology transformation due to
increasingøN was also predicted by Gemma et al.16

To compare the energetic closeness of these microphases,
we have listed (Table 1) the minimized free energies (saddle
point free energies) for the typical phases of star triblock
copolymers with symmetric interaction parameters. We see that
the saddle point free energy is higher as the volume fractions
of the three species (fA, fB, fC) become more comparable. The

TABLE 1: Saddle Point Free Energy of Different Phases for
Symmetric Interactions

composition
(fA/fB/fC) morphology

saddle point
free energy

free energies
with strong
segregation
(Fmin/kbT)

0.8/0.1/0.1 HEX 5.90785
0.7/0.2/0.1 CSH 7.02661
0.6/0.3/0.1 LAM3 7.29861
0.6/0.2/0.2 LAM+BD 8.41801 7.5757
0.5/0.3/0.2 KP 8.90715
0.4/0.4/0.2 OOT 8.94645 7.6064
0.4/0.3/0.3 HEX3 9.38304 7.6403
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reason is that the interfacial areas (in a unit volume) between
the incompatible components are larger for triblocks with
comparable volume fractions of the three species. However, we
note that the saddle point free energies of the KP and OOT
phases are very close, suggesting that these two phases compete
for stability with each other in their respective stable regions.
Therefore, it is possible experimentally to observe a (metastable)
KP (OOT) phase in the stable region of the OOT (KP) phase
that is predicted by the present phase diagram.

In Table 1, we also list the minimized free energy for the
LAM + BD, OOT, and HEX3 phases that is predicted by the
strong-segregation theory (SST) for star triblock copolymers.
For details of the calculation, see ref 16. The reason that we
choose only these three phases for the SST calculation is the
following. The SST assumes that different blocks are strongly
stretched and completely separated except for a narrow region
about the interfaces, which is believed to be accurate in theøN
f ∞ limit. Furthermore, the present form of SST can treat
microphases with only simple geometrical structures. Our SCF
calculation, however, is performed in an intermediateøN regime.
Therefore, we observe a complex structuresthe KP phase and
various microphases with mixed blocks, such as the HEX, CSH,
and LAM3 structures. An accurate calculation of the free energy
for such phases in the frame of SST is absent at present. Even
for the microphases that can be treated by the SST, the predicted
free energy is always lower than that calculated by the SCFT.
Nevertheless, as shown in Figure 3, if one keepsfA ) fB and
increasesfC, starting from the OOT phase, then the stable phases
predicted by the SST follow the order OOT, HEX3, and LAM
+ BD, which is in agreement with the SCF calculation (Figure
2).

B. Asymmetric Interaction Parameters.In this section, we
focus on the influence of the asymmetry of the interaction
parameters among the three species on the phase behavior of
star triblock copolymers. We investigate a typical case in which
the interactions between blocks A and C are less unfavorable
than that between the AB and BC pairs. Therefore, the system
tends to form morphologies that can avoid contacts between
blocks A (B) and B (C), whereas the three domains have to
adjoin at the core because of the star architecture. Figure 4 shows
an example phase diagram forøABN ) 72, øBCN ) 72, and
øACN ) 22. Obviously, the permutation symmetry among A,
B, and C blocks in the symmetric case is reduced to that only
between blocks A and C because of the interaction parameters
that we have assumed. Near the AC edge (wherefB is no more
than 0.1), when the compositions of the A and C blocks are

comparable, the system tends to form a microphase with
alternating A and C lamellae with circular beads of minority B
blocks located at the A/C interfaces (LAM+ BD-I), whose
structure is schematically shown in Figure 1i. It is interesting
that a similar micorphase was also observed by Gemma et al.
with the composition of (A:B:C/1:1:0.17≈ 0.33) in Monte Carlo
simulations but with symmetric interaction parameters.16 When
B blocks are the majority species (fB g 0.5), then the LAM3

phase is formed because of slightly unfavorable contacts
between the A and C blocks. In this phase, the cores of star
triblocks lie on the B/C interfaces, and the A blocks have to
penetrate the C domains. Thus, the A blocks have to mix
partially with C blocks to meet the requirement of the star
architecture, as schematically shown in Figure 5a.

Near the AB and BC edges, wherefB < 0.45, fC < 0.25, or
fA < 0.25, CSH structures are formed, with B blocks forming
the cores, C (A) blocks forming the shells, and A (C) blocks
being the matrix (as shown in Figure 5b) to reduce the interfacial
energy between the B (A) and C (B) blocks. Furthermore, the
less unfavorable interaction between the A and C blocks makes
it possible for the two blocks to mix partially to satisfy the
requirement that three blocks have to join at the core of the
star. It is interesting to compare this predicted phase with the
experimental findings by Thomas et al.,26 who studied star
triblocks of polystyrene (PS), polyisoprene (PI), and poly(methyl
methacrylate) (PMMA) in which PS and PMMA are weakly

Figure 3. Plot of the free energies of OOT, HEX3 and LAM + BD
phases vsfC (fA ) fB, øABN ) øBCN ) øACN ) 35) using strong-
segregation theory.

Figure 5. Schematic representation of the microstructures of LAM3

and CSH.
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incompatible but show a strong incompatibility toward PI. It
was found that CSH morphology was observed with the
compositions of PS-PI-PMMA (0.21/0.23/0.56 and 0.20/0.21/
0.59), which is qualitatively in agreement with our theoretical
calculation in Figure 4. Finally, we note that in the case of equal
interaction parameters in Figure 2 a perfect three-color hex-
agonal honeycomb phase (HEX3) occurs at nearly equal volume
fractions of the three components. With asymmetric interaction
parameters in Figure 4, however, octagon-octagon-tetragon
(OOT) and decagon-hexagon-tetragon (DEHT) structures are
found instead for the same composition. We speculate that this
might be the reason that the hexagonal honeycomb phase has
never been observed in experiments. Indeed, it is difficult to
synthesize an exactly symmetric ABC star triblock copolymer,
especially with equal interaction energies. The octagon-
octagon-tetragon (OOT) phase similar to our calculation but
with the polygons bent into arcs was found in a recent
experiment by Hasegawa et al.,27 who studied the microphases
of star polystyrene (PS)-polyisoprene (PI)-poly(dimethyl-
siloxane) (PDMS) with the volume fraction of 1:1:1 by using
energy-filtering TEM and 3D electron tomography. They
claimed that the OOT structure is due to the asymmetric
interactions among the three distinct blocks, where both PDMS
and PI show stronger unfavorable interactions toward PS, in
contrast to the relatively weak incompatibility between PI and
PDMS.

The minimized free energies of typical phases with asym-
metric interaction parameters are listed in Table 2. As is
observed in the case with symmetric interactions, in general
the phases with more comparable volume fractions of the three
components have higher free energy. The saddle point free
energies for the phases of OOT and DEHT are extremely close
to each other, suggesting that these phases compete to exist and
thus might be experimentally observed in the same region of
the phase diagram. It should be noted that the SST is in-
applicable in the regime of the asymmetric interaction param-
eters that we used because one of the interaction parameters,
øACN ) 22, is far away from the strong-segregation limit.

IV. Conclusions

Using a combinatorial screening method based on the SCFT
for polymers, we have investigated the self-assembled structures
of ABC star triblock copolymer melts. Nine ordered, stable
microphases in 2D are observed, including a hexagonal phase,
core-shell hexagonal phase, lamellar phase, and alternating
lamellar phase with beads at the interface as well as complex
ordered structures such as a three-color hexagonal honeycomb
phase, knitting pattern, octagon-octagon-tetragon phase, lamel-
lae with alternating beads inside, and decagon-hexagon-
tetragon phase. By systematically varying the composition, the
triangle phase diagrams are constructed for ABC star triblocks

both with symmetric and asymmetric interaction parameters
among the three species. It is found that when the volume
fractions of the three blocks are comparable the star architecture
plays a profound role in the complex microphase formation.
To meet the requirements of star architecture, various complex
structures including knitting pattern, lamellae with alternating
beads inside, and even-numbered polygonal phases such as
three-color hexagonal honeycomb, octagon-octagon-tetragon,
and decagon-hexagon-tetragon phases, which are absent in
linear ABC triblocks, are formed. However, when one of the
blocks is relatively short withøN values that are not very large,
the star architecture is less important; therefore, the phase
behavior is similar to that of linear triblocks. However, this
feature will disappear whenøN reaches larger values or the
interaction parameters become asymmetric. In general, the
triangle phase diagrams we present, as a first step, may be used
as a guide for designing possible ordered structures involving
star ABC triblock copolymers.
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